Tutorial-2: Interoperability Types

Case Study-1 Solution

S1:						
ID	Name	Tel	Date of	Values	Report	Туре
			Birth			

S2:						
ID	Name	DoB	Tel	Action	Finding	Values

1. Structural interoperability

To achieve structural interoperability, S1 to S2, i.e. to send data from S1 to S2, we create a Data Structure mapping template, at S2, as follows:

S1.ID=S2.ID S1.Name=S2.Name S1.Tel=S2.Tel S1.DateOfBirth=S2.DoB S1.Values=S2.Values S1.Report=S2.Finding S1.Type=S2.Action

To achieve structural interoperability, S2 to S1, to send data from S2 to S1, we create a Data Structure mapping template, at S1, to show mapping from S1 to S2 (opposite of the above):

2. Syntactic interoperability

To achieve syntactic interoperability, we need to ensure that the syntax of each data type is consistently stored, i.e. the stored values for each type, in each column are consistent. Example, as follows:

ID	Name	Tel	Date of	Values	Report	Туре
			Birth			
0011-1	А	0097222334444	1 Apr 78		Hypertension	Diagnosis
	Dawood					
0011-1	А	0097222334444	1 Apr 78	5000 mcL	WBC	Labtest
	Dawood					
0011-1	1N	00972593306070	1 Apr 78	90 mg	Nadolol	Drug
	Dawood		_	_		_

3. Semantic interoperability

To achieve semantic interoperability, we need to

1. identify the types of semantic (terminology) dictionaries need to define the meaning/semantic of each term (i.e. for each data type/column and its values) used.

2. construct a message, that includes defines the semantic terminology for each record/raw of data.

A Possible solution, is as follows:

1- Potential Terminologies:

Unit Diagnosis: Disease = ICD 10 Or SNOMED-CT Labtest: LIONC Drug: RxNorm

2. Construct message for each raw, between source and destination systems.

To send first two records/raw data, between two systems, we send each record/raw as a message as follows:

- ⇒ Data, from 1st Record/Raw to send from S1 to S2 as a semantically interoperable message: Message1=(ID="0011-1", semantictype=none; Name= "A Dawood", semantictype=none; Tel=0097222334444, semantictype=none; DateOfBirth=1 Apr 78, semantictype=none; Values="", unit="", semantictype=Unit, code=; Report="Hypertension", semantictype=ICD10, code=000.00;)
- ⇒ Data, from 2nd Record/Raw to send from S1 to S2 as a semantically interoperable message: Message2=(ID="0011-1", semantictype=none; Name= "A Dawood", semantictype=none; Tel=0097222334444, semantictype=none; DateOfBirth=1 Apr 78, semantictype=none; Values="000, unit="mcl", semantictype= Unit, code=00000; Report="WBC", semantictype= LOINC, code=0000-0;
- ⇒ Data, from 3rd Record/Raw to send from S1 to S2 as a semantically interoperable message: Message3=(ID="0011-1", semantictype=none; Name= "1N Dawood", semantictype=none; Tel=0097222334444, semantictype=none; DateOfBirth=1 Apr 78, semantictype=none; Values=90, unit="mg", semantictype= Unit, code=00000; Report="Nadolol", semantictype= RxNorm, code= 000000;